Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 781
Filtrar
1.
Sci Rep ; 14(1): 4673, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409357

RESUMO

The TAS2R38 gene is well known for its function in bitter taste sensitivity, but evidence also suggests a role in innate immunity. TAS2R38 may be relevant in coronavirus disease 2019 (COVID-19), but research findings are inconsistent. The objective of this study was to explore whether common TAS2R38 haplotypes are associated with COVID-19 infection and symptomatology in the Canadian Longitudinal Study on Aging (CLSA). Data from the CLSA COVID-19 Questionnaire and Seroprevalence sub-studies were utilized with CLSA genetic data for common TAS2R38 haplotypes related to bitter taste sensitivity. Haplotypes were categorized into three diplotype groups: [P]AV homozygotes, [P]AV/[A]VI heterozygotes, and [A]VI homozygotes. No significant differences were observed between diplotypes and COVID-19 infection frequency. Among self-reported COVID-19 cases (n = 76), and in uncorrected exploratory analyses, heterozygotes were less likely to report experiencing sinus pain compared to [P]AV homozygotes. Among seroprevalence-confirmed cases (n = 177), [A]VI homozygotes were less likely to report experiencing a sore/scratchy throat compared to [P]AV homozygotes. However, both observations were non-significant upon correction for multiple testing. In this study, TAS2R38 haplotypes were not significantly associated with COVID-19 infection or symptomatology. Nevertheless, in light of some exploratory patterns and conflicting evidence, additional research is warranted to evaluate links between TAS2R38 and innate immunity.


Assuntos
COVID-19 , Receptores Acoplados a Proteínas G , Humanos , Envelhecimento/genética , Canadá/epidemiologia , COVID-19/epidemiologia , COVID-19/genética , Estudos Transversais , Haplótipos , Estudos Longitudinais , Receptores Acoplados a Proteínas G/genética , Estudos Soroepidemiológicos , Paladar/genética
2.
Chem Senses ; 492024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38183495

RESUMO

The peripheral taste system is more complex than previously thought. The novel taste-signaling proteins TRPM4 and PLCß3 appear to function in normal taste responding as part of Type II taste cell signaling or as part of a broadly responsive (BR) taste cell that can respond to some or all classes of tastants. This work begins to disentangle the roles of intracellular components found in Type II taste cells (TRPM5, TRPM4, and IP3R3) or the BR taste cells (PLCß3 and TRPM4) in driving behavioral responses to various saccharides and other sweeteners in brief-access taste tests. We found that TRPM4, TRPM5, TRPM4/5, and IP3R3 knockout (KO) mice show blunted or abolished responding to all stimuli compared with wild-type. IP3R3 KO mice did, however, lick more for glucose than fructose following extensive experience with the 2 sugars. PLCß3 KO mice were largely unresponsive to all stimuli except they showed normal concentration-dependent responding to glucose. The results show that key intracellular signaling proteins associated with Type II and BR taste cells are mutually required for taste-driven responses to a wide range of sweet and carbohydrate stimuli, except glucose. This confirms and extends a previous finding demonstrating that Type II and BR cells are both necessary for taste-driven licking to sucrose. Glucose appears to engage unique intracellular taste-signaling mechanisms, which remain to be fully elucidated.


Assuntos
Glucose , Fosfolipase C beta , Canais de Cátion TRPM , Paladar , Animais , Camundongos , Carboidratos , Glucose/farmacologia , Glucose/metabolismo , Camundongos Knockout , Edulcorantes/farmacologia , Paladar/genética , Paladar/fisiologia , Percepção Gustatória , Canais de Cátion TRPM/genética , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo
3.
J Hazard Mater ; 466: 133497, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38278077

RESUMO

The discernment and aversion of noxious gustatory stimuli profoundly influence homeostasis maintenance and survival of fauna. Cantharidin, a purported aphrodisiac, is a monoterpenoid compound secreted by many species of blister beetle, particularly by the Spanish fly, Lytta vesicatoria. Although the various advantageous functions of cantharidin have been described, its taste analysis and toxic properties in animalshave been rarely explored. Our study using Drosophila melanogaster examines the taste properties of cantharidin along with its potential hazardous effect in the internal organs of animals. Here, we find that cantharidin activates bitter taste receptors. Our findings show that specific ionotropic receptors (IR7g, IR51b, and IR94f) in labellar bitter-sensing neurons, along with co-receptors IR25a and IR76b, are responsible for detecting cantharidin. By introducing the IR7g and IR51b in sweet and bitter neurons, naturally expressing IR76b and IR25a, we show that these genes are sufficient for cantharidin perception. Moreover, we witness the deleterious ramifications of cantharidin on survival and visceral integrities, shedding light on its hazardous effect.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Cantaridina/toxicidade , Paladar/genética , Percepção Gustatória/fisiologia
4.
Physiol Behav ; 276: 114473, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262572

RESUMO

Alcohol use disorder in humans is highly heritable, and as a term is synonymous with alcoholism, alcohol dependence, and alcohol addiction. Defined by the NIAAA as a medical condition characterized by an impaired ability to stop or control alcohol use despite adverse social, occupational, or health consequences, the genetic basis of alcohol dependence is much studied. However, an intriguing component to alcohol acceptance exists outside of genetics or social factors. In fact, mice of identical genetic backgrounds without any prior experience of tasting ethanol display widely varying preferences to it, far beyond those seen for typical taste solutions. Here, we hypothesized that a preference for ethanol, which tastes both bitter and sweet to humans, would be influenced by taste function. Using a mouse model of taste behavior, we tested preferences for bitter and sweet in mice that, without training or previous experience, either preferred or avoided ethanol solutions in consumption trials. Data showed clear sex differences, in which male mice that preferred ethanol also preferred a bitter quinine solution, whereas female mice that preferred ethanol also preferred a sweet sucralose solution. Male mice preferring ethanol also exhibited lower expression levels of mRNA for genes encoding the bitter taste receptors T2R26 and T2R37, and the bitter transducing G-protein subunit GNAT3, suggesting that the higher ethanol preference observed in the male mice may be due to bitter signaling, including that arising from ethanol, being weaker in this group. Results further support links between ethanol consumption and taste response, and may be relevant to substance abuse issues in human populations.


Assuntos
Alcoolismo , Paladar , Feminino , Masculino , Humanos , Paladar/genética , Alcoolismo/genética , Percepção Gustatória/genética , Etanol/farmacologia , Consumo de Bebidas Alcoólicas/genética , Preferências Alimentares/fisiologia
5.
Genes (Basel) ; 15(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38254970

RESUMO

Rice is an important crop in the word, and fat is one of the main important nutrient components of rice. The lipid content and fatty acid composition of grains significantly influences the quality of rice. In this study, 94 homozygous recombination inbred lines (RILs) were developed and the crude fat content of them displayed a normal distribution ranging from 0.44% to 2.62%. Based on their taste quality, a positive association between fat content and eating quality was revealed. Then, two lines (FH and FL) were selected with similar agronomic characteristics and different lipid content and taste quality for RNA sequencing analysis, and a total of 619 differentiable expressed genes were detected, primarily enriched in metabolic pathways such as starch and sucrose metabolism, fatty acid metabolism, and amino acid metabolism. The expression of two genes related to fatty acid synthesis and elongation was significantly up-regulated, while the expression of three genes related to fatty acid degradation was significantly down-regulated in FH grains. By using liquid chromatography, the relative levels of palmitic acid and oleic acid were discovered significantly higher in FH grains. Additionally, the comparative genomic analysis was conducted to visualize genomic differences of five genes. Ultimately, two genes (Os07g0417200 and Os12g0102100) were selected to be the key gene to affect the lipid metabolism, especially for the synthesis of unsaturated fatty acids, significantly changing the eating quality of rice. These results provide a theoretical basis for improving the taste quality of rice.


Assuntos
Oryza , Oryza/genética , Paladar/genética , Perfilação da Expressão Gênica , Expressão Gênica , Ácidos Graxos/genética
6.
J Cell Physiol ; 239(2): e31179, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219077

RESUMO

Type 2 taste receptors (TAS2Rs), traditionally known for their role in bitter taste perception, are present in diverse reproductive tissues of both sexes. This review explores our current understanding of TAS2R functions with a particular focus on reproductive health. In males, TAS2Rs are believed to play potential roles in processes such as sperm chemotaxis and male fertility. Genetic insights from mouse models and human polymorphism studies provide some evidence for their contribution to male infertility. In female reproduction, it is speculated that TAS2Rs influence the ovarian milieu, shaping the functions of granulosa and cumulus cells and their interactions with oocytes. In the uterus, TAS2Rs contribute to uterine relaxation and hold potential as therapeutic targets for preventing preterm birth. In the placenta, they are proposed to function as vigilant sentinels, responding to infection and potentially modulating mechanisms of fetal protection. In the cervix and vagina, their analogous functions to those in other extraoral tissues suggest a potential role in infection defense. In addition, TAS2Rs exhibit altered expression patterns that profoundly affect cancer cell proliferation and apoptosis in reproductive cancers. Notably, TAS2R agonists show promise in inducing apoptosis and overcoming chemoresistance in these malignancies. Despite these advances, challenges remain, including a lack of genetic and functional studies. The application of techniques such as single-cell RNA sequencing and clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated endonuclease 9 gene editing could provide deeper insights into TAS2Rs in reproduction, paving the way for novel therapeutic strategies for reproductive disorders.


Assuntos
Papilas Gustativas , Animais , Humanos , Camundongos , Genitália , Receptores Acoplados a Proteínas G/metabolismo , Sêmen , Paladar/genética , Papilas Gustativas/metabolismo
7.
Nat Ecol Evol ; 8(1): 111-120, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38093021

RESUMO

Taste is a vital chemical sense for feeding behaviour. In mammals, the umami and sweet taste receptors comprise three members of the taste receptor type 1 (T1R/TAS1R) family: T1R1, T1R2 and T1R3. Because their functional homologues exist in teleosts, only three TAS1R genes generated by gene duplication are believed to have been inherited from the common ancestor of bony vertebrates. Here, we report five previously uncharacterized TAS1R members in vertebrates, TAS1R4, TAS1R5, TAS1R6, TAS1R7 and TAS1R8, based on genome-wide survey of diverse taxa. We show that mammalian and teleost fish TAS1R2 and TAS1R3 genes are paralogues. Our phylogenetic analysis suggests that the bony vertebrate ancestor had nine TAS1Rs resulting from multiple gene duplications. Some TAS1Rs were lost independently in descendent lineages resulting in retention of only three TAS1Rs in mammals and teleosts. Combining functional assays and expression analysis of non-teleost fishes we show that the novel T1Rs form heterodimers in taste-receptor cells and recognize a broad range of ligands such as essential amino acids, including branched-chain amino acids, which have not been previously considered as T1R ligands. This study reveals diversity of taste sensations in both modern vertebrates and their ancestors, which might have enabled vertebrates to adapt to diverse habitats on Earth.


Assuntos
Percepção Gustatória , Paladar , Animais , Paladar/genética , Filogenia , Vertebrados/genética , Peixes/genética , Mamíferos
8.
Int J Food Sci Nutr ; 75(2): 197-206, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38115549

RESUMO

Bitterness-receptor gene TAS2R38 is associated with taste sensitivity and dietary behaviour, and is known to play a critical role in adiposity. However, evidence regarding body composition from a large cohort is lacking. This study aimed to ascertain whether TAS2R38 rs10246939 C > T bitterness genetic variation is associated with body composition in Korean individuals. The TAS2R38 rs10246939 genotypes, anthropometric measurements, and body composition of 1,843 males and 1,801 females from the Korean Genome and Epidemiology Study were analysed. Findings suggested that there was a significant difference in body fat components by TAS2R38 genotype. Furthermore, the bitterness genotype exhibited a positive association with adiposity markers in females. The TT genotype showed greater body mass index, body fat percentage, and degree of obesity than those with the C allele. However, such an association was not observed in males. In conclusion, this study suggests that TAS2R38 rs10246939 is associated with fat tissue markers in Korean females.


Assuntos
Receptores Acoplados a Proteínas G , Paladar , Humanos , Masculino , Feminino , Paladar/genética , Receptores Acoplados a Proteínas G/genética , Genótipo , Obesidade/genética , Adiposidade , Variação Genética , República da Coreia , Polimorfismo de Nucleotídeo Único
9.
J Nutr Sci Vitaminol (Tokyo) ; 69(5): 347-356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37940575

RESUMO

Human type 2 taste receptor (TAS2R) genes encode bitter-taste receptors that are activated by various bitter ligands. It has been said that TAS2R38 may detect bitter substances and then suppress their intake by controlling gustatory or digestive responses. The major haplotypes of TAS2R38 involve three non-synonymous, closely-linked single-nucleotide polymorphisms (SNPs), leading to three amino acid substitutions (A49P, V262A and I296V) and resulting in a PAV or AVI allele. The allele frequency of AVI/PAV was 0.42/0.58 in this study. The genotype frequency distributions of TAS2R38 were 18.32%, 46.95% and 33.95% for AVI/AVI, AVI/PAV and PAV/PAV, respectively, and were in Hardy-Weinberg equilibrium. Five haplotype combinations of minor alleles were identified: AVI/AAV, AVI/AVV, AAI/PAV, AVI/PVV, AVI/AAI, with corresponding frequencies of 0.49%, 0.10%, 0.10%, 0.05%, 0.05%, respectively, in 2,047 Japanese Tohoku Medical Megabank Organization (ToMMo) subjects (2KJPN). The 16 subjects with these minor alleles were excluded from the questionnaire analysis, which found no significant differences among the major TAS2R38 genotypes (AVI/AVI, AVI/PAV and PAV/PAV) in the intake frequency of cruciferous vegetables or in the frequency of drinking alcohol. This result differs from previous data using American and European subjects. This is the first study to analyze the relationship between TAS2R38 genotype and the eating and drinking habits of Japanese subjects. It was also shown that there were no relationships at all between the genetic polymorphism of TAS2R46 and the phenotypes such as clinical BMI, eating and drinking habits among the 3 genotypes of TAS2R46 (∗/∗, ∗/W, W/W) at position W250∗ (∗stop codon).


Assuntos
População do Leste Asiático , Receptores Acoplados a Proteínas G , Paladar , Humanos , Genótipo , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Paladar/genética , Comportamento de Ingestão de Líquido , Dieta
10.
Lifestyle Genom ; 16(1): 224-236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37883944

RESUMO

INTRODUCTION: Despite the prevalence of depression and anxiety worldwide, their aetiologies remain unclear, and they can be difficult to diagnose and treat. Changes in salt-taste perception have been found in both conditions. Single-nucleotide polymorphisms (SNPs) in the salt-taste-related gene, TRPV1, have been associated with alterations to salt-taste perception, preference, and sodium consumption. Diet quality is a known modifier of depression and anxiety and recently, sodium intake has been studied in mental health. However, the relationships between salt-taste genetics, depression, anxiety, and these dietary factors are yet to be elucidated. METHODS: Data from the well-characterized cross-sectional Retirement Health and Lifestyle Study (n = 536, ≥65 y) were used to explore the relationships between the salt-taste SNP TRPV1-rs8065080, levels of depression and anxiety (Hospital Anxiety and Depression Scale, HADS), estimated sodium intake, and diet quality in this secondary analysis. Standard least-squares regression and nominal logistic regression modelling were used to compare continuous and categorical variables, respectively, with analyses stratified by sex. RESULTS: Presence of the TRPV1-rs8065080 variant allele (C) was found to increase the likelihood of having depression (HADS) in the total population and in males. The associations remained significant after adjusting for sodium intake, three diet quality indices, and demographic variables, suggesting that TRPV1-rs8065080 genotype is driving the association with depression. DISCUSSION/CONCLUSION: Future studies should explore extra-oral functions of the SNP and salt-taste receptors in the brain and the roles of neurotransmitters common to both depression and salt taste to improve the management of this increasingly prevalent and difficult-to-treat condition.


Assuntos
Depressão , Paladar , Idoso , Humanos , Masculino , Estudos Transversais , Depressão/epidemiologia , Depressão/genética , Polimorfismo de Nucleotídeo Único , Cloreto de Sódio na Dieta , Paladar/genética , Canais de Cátion TRPV/genética , Feminino
11.
Front Biosci (Landmark Ed) ; 28(9): 201, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37796686

RESUMO

BACKGROUND: Chicory (Cichorium intybus L.), a member of the Asteraceae family, is known for its numerous health benefits, including its prebiotic, digestive, antioxidant or anti-inflammatory effects. Used as a coffee substitute, chicory roots is also appreciated for its bitterness, which can prove to be a disadvantage for other uses in food. The bitterness of chicory is largely linked to the presence of sesquiterpene lactones (STLs) in the roots. METHODS: In order to create less bitter industrial chicory varieties, CRISPR/Cas9 technology was used to inhibit the first two genes of the STL biosynthetic pathway: germacrene A synthase (CiGAS), short form, and germacrene A oxidase (CiGAO). To determine the impact of these reductions on the perception of bitterness, a sensory analysis of 13 field-grown chicories genotypes, contrasting for their STL composition, allowed the construction of obtain a bitterness scale by correlating STL content with perceived bitterness. The edited chicories were positioned on this scale according to their STL content. RESULTS: Biallelic mutations in two of the copies of CiGAS-short form or in the CiGAO gene led to a reduction in STL content of edited chicories and a reduction in bitterness, or even an absence of perception, was obtained for some mutants. CONCLUSIONS: The use of the CRISPR/Cas9 tool as well as the choice of targets therefore makes it possible to modulate the bitterness of chicory.


Assuntos
/genética , Sistemas CRISPR-Cas/genética , Paladar/genética , Mutagênese
12.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685855

RESUMO

There is wide variation in how individuals perceive the chemosensory attributes of liquid formulations of ibuprofen, encompassing both adults and children. To understand personal variation in the taste and chemesthesis properties of this medicine, and how to measure it, our first scientific strategy centered on utilizing trained adult panelists, due to the complex and time-consuming psychophysical tasks needed at this initial stage. We conducted a double-blind cohort study in which panelists underwent whole-genome-wide genotyping and psychophysically evaluated an over-the-counter pediatric medicine containing ibuprofen. Associations between sensory phenotypes and genetic variation near/within irritant and taste receptor genes were determined. Panelists who experienced the urge to cough or throat sensations found the medicine less palatable and sweet, and more irritating. Perceptions varied with genetic ancestry; panelists of African genetic ancestry had fewer chemesthetic sensations, rating the medicine sweeter, less irritating, and more palatable than did those of European genetic ancestry. We discovered a novel association between TRPA1 rs11988795 and tingling sensations, independent of ancestry. We also determined for the first time that just tasting the medicine allowed predictions of perceptions after swallowing, simplifying future psychophysical studies on diverse populations of different age groups needed to understand genetic, cultural-dietary, and epigenetic factors that influence individual perceptions of palatability and, in turn, adherence and the risk of accidental ingestion.


Assuntos
Ibuprofeno , Paladar , Estudos de Coortes , Variação Genética , Percepção , Sensação , Paladar/genética , Humanos , Administração Oral , Formas de Dosagem
13.
J Nutr ; 153(11): 3270-3279, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37716607

RESUMO

BACKGROUND: Variation in common taste receptor type 2 member 38 (TAS2R38) haplotypes is associated with bitter-taste sensitivity, but associations with dietary intake and risk factors for chronic disease are inconsistent. OBJECTIVES: To determine whether common TAS2R38 haplotypes are associated with dietary intake and risk factors for chronic disease using cross-sectional data from the Canadian Longitudinal Study on Aging (n = 26,090). Outcomes were assessed among the full sample and stratified by sex. METHODS: Taster status was determined from TAS2R38 haplotypes, and the respondents were classified as supertasters, tasters, and nontasters. Primary outcome variables were the consumption frequencies of vegetables, sweet-tasting foods, alcoholic beverages, and visceral adiposity index (VAI). Secondary outcome variables were the individual VAI components. Multivariable regression models adjusted for sociodemographic and lifestyle factors were used to assess associations between the taster status and outcome variables. RESULTS: Among the sample, 5655, 12,821, and 7614 respondents were classified as supertasters, tasters, and nontasters, respectively. Vegetable consumption was significantly higher among nontasters than among supertasters (1.23 ± 0.26 and 1.20 ± 0.22, respectively, P = 0.02). Among males, the consumption of sweet-tasting foods (0.40 ± 8.80 and 0.38 ± 7.55, P = 0.02) and green salad (0.35 ± 0.31 and 0.33 ± 0.27, P = 0.02) was also higher for nontasters than supertasters. Nontasters were more likely to be regular alcohol consumers compared with supertasters among the full sample (odds ratio [95% confidence interval]: 1.12 [1.03, 1.22]; P = 0.01) and among females (OR: 1.13; 95% CI: 1.01, 1.27; P = 0.04). No significant associations were observed between TAS2R38 haplotypes and VAI, although high-density lipoprotein cholesterol was significantly lower among supertasters than nontasters (1.45 ± 0.59 and 1.47 ± 0.63, respectively; P = 0.04). CONCLUSIONS: Among middle- to older-aged adults, minor associations are observed between TAS2R38 haplotypes, dietary intake, and high-density lipoprotein cholesterol. Genetic predisposition to bitter-taste sensitivity is linked to diet; however, further research is needed to understand the relevance for chronic disease risk.


Assuntos
Paladar , Verduras , Canadá/epidemiologia , Colesterol , Estudos Transversais , Ingestão de Alimentos , Haplótipos , Lipoproteínas HDL , Estudos Longitudinais , Receptores Acoplados a Proteínas G/genética , Fatores de Risco , Paladar/genética
14.
Theranostics ; 13(9): 2896-2913, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284449

RESUMO

Rationale: Gustation is important to several biological functions in mammals. However, chemotherapy drugs often harm taste perception in cancer patients, while the underlying mechanism is still unclear for most drugs and there is no effective way to restore taste function. This study investigated the effects of cisplatin on the taste cell homeostasis and gustatory function. Methods: We used both mice and taste organoid models to study the effect of cisplatin on taste buds. Gustometer assay, gustatory nerve recording, RNA-Sequencing, quantitative PCR, and immunohistochemistry was performed to analyze the cisplatin-induced alteration in taste behavior and function, transcriptome, apoptosis, cell proliferation and taste cell generation. Results: Cisplatin inhibited proliferation and promoted apoptosis in the circumvallate papilla, leading to significant impairment in taste function and receptor cell generation. The transcriptional profile of genes associated with cell cycle, metabolic process and inflammatory response was significantly altered after cisplatin treatment. Cisplatin inhibited growth, promoted apoptosis, and deferred taste receptor cell differentiation in taste organoids. LY411575, a γ-secretase inhibitor, reduced the number of apoptotic cells and increased the number of proliferative cells and taste receptor cells, potentially suggesting as a taste tissue protective agent against chemotherapy. LY411575 treatment could offset the increased number of Pax1+ or Pycr1+ cells induced by cisplatin in the circumvallate papilla and taste organoids. Conclusion: This study highlights the inhibitory effects of cisplatin on taste cell homeostasis and function, identifies critical genes and biological processes regulated by chemotherapy, and proposes potential therapeutic targets and strategy for taste dysfunction in cancer patients.


Assuntos
Papilas Gustativas , Camundongos , Animais , Papilas Gustativas/metabolismo , Cisplatino/farmacologia , Percepção Gustatória , Paladar/genética , Homeostase , Mamíferos
15.
Nutrients ; 15(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299528

RESUMO

Taste perception is a well-documented driving force in food selection, with variations in, e.g., taste receptor encoding and glucose transporter genes conferring differences in taste sensitivity and food intake. We explored the impact of maternal innate driving forces on sweet taste preference and intake and assessed whether their children differed in their intake of sweet foods or traits related to sweet intake. A total of 133 single nucleotide polymorphisms (SNPs) in genes reported to associate with eating preferences were sequenced from saliva-DNA from 187 mother-and-child pairs. Preference and intake of sweet-, bitter-, sour-, and umami-tasting foods were estimated from questionnaires. A total of 32 SNP variants associated with a preference for sweet taste or intake at a p-value < 0.05 in additive, dominant major, or dominant minor allele models, with two passing corrections for multiple testing (q < 0.05). These were rs7513755 in the TAS1R2 gene and rs34162196 in the OR10G3 gene. Having the T allele of rs34162196 was associated with higher sweet intake in mothers and their children, along with a higher BMI in mothers. Having the G allele of rs7513755 was associated with a higher preference for sweets in the mothers. The rs34162196 might be a candidate for a genetic score for sweet intake to complement self-reported intakes.


Assuntos
Mães , Paladar , Feminino , Humanos , Paladar/genética , Receptores Acoplados a Proteínas G/genética , Percepção Gustatória/genética , Preferências Alimentares , Relações Mãe-Filho
16.
Am J Speech Lang Pathol ; 32(4): 1770-1781, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37257285

RESUMO

PURPOSE: Swallowing and taste share innervation pathways and are crucial to nutritive intake. Individuals vary in their perception of taste due to factors such as genetics; however, it is unclear to what extent genetic taste status influences swallowing physiology and function. The purpose of this review article is to provide background on genetic taste status, review the evidence on the association between genetic taste status and swallowing, and discuss research and clinical implications. METHOD: A comprehensive literature review was conducted using search terms related to swallowing and genetic taste status. Studies were included if they investigated the main effect of genetic taste status on swallowing or the interaction of genetic taste status with other variables. Studies were grouped by participant population (healthy participants or persons with a swallowing disorder), swallowing-related outcome measure, and method of genetic taste status measurement. RESULTS: The results were mixed, with five of 10 reviewed studies reporting a statistically significant main or interaction effect on swallowing. Most studies included healthy participants, with only one study investigating participants with dysphagia. Additionally, swallowing-related outcome measures and methods of determining genetic taste status varied greatly between studies conducted on separate cohorts. CONCLUSIONS: Few studies have incorporated genetic taste status as a variable in swallowing research, and results are mixed. Future research on sensation and swallowing should consider the potential effect of genetic taste status and follow standardized procedures for its determination. Despite the limited evidence, clinicians may consider how individual differences in perception shape swallowing outcomes.


Assuntos
Transtornos de Deglutição , Deglutição , Humanos , Deglutição/fisiologia , Paladar/genética , Percepção Gustatória/genética , Transtornos de Deglutição/genética , Voluntários Saudáveis
17.
Nutrients ; 15(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37242298

RESUMO

Individual taste sensitivity influences food preferences, nutritional control, and health, and differs greatly between individuals. The purpose of this study was to establish a method of measuring and quantifying an individual's taste sensitivity and to evaluate the relationship between taste variation and genetic polymorphisms in humans using agonist specificities of the bitter taste receptor gene, TAS2R38, with the bitter compound 6-n-propylthiouracil (PROP). We precisely detected the threshold of PROP bitter perception by conducting the modified two-alternative forced-choice (2AFC) procedure with the Bayesian staircase procedure of the QUEST method and examined genetic variation in TAS2R38 in a Japanese population. There were significant differences in PROP threshold between the three TAS2R38 genotype pairs for 79 subjects: PAV/PAV vs AVI/AVI, p < 0.001; PAV/AVI vs AVI/AVI, p < 0.001; and PAV/PAV vs PAV/AVI, p < 0.01. Our results quantified individual bitter perception as QUEST threshold values: the PROP bitter perception of individuals with the PAV/PAV or PAV/AVI genotypes was tens to fifty times more sensitive than that of an individual with the AVI/AVI genotype. Our analyses provide a basic model for the accurate estimation of taste thresholds using the modified 2AFC with the QUEST approach.


Assuntos
Limiar Gustativo , Paladar , Adulto , Humanos , Paladar/genética , Limiar Gustativo/genética , Propiltiouracila , Japão , Teorema de Bayes , Receptores Acoplados a Proteínas G/genética , Percepção Gustatória/genética , Genótipo , Polimorfismo Genético , Variação Genética
18.
Mol Nutr Food Res ; 67(11): e2200775, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36929150

RESUMO

SCOPE: To avoid ingestion of potentially harmful substances, humans are equipped with about 25 bitter taste receptor genes (TAS2R) expressed in oral taste cells. Humans exhibit considerable variance in their bitter tasting abilities, which are associated with genetic polymorphisms in bitter taste receptor genes. One of these variant receptor genes, TAS2R2, is initially believed to represent a pseudogene. However, TAS2R2 exists in a putative functional variant within some populations and can therefore be considered as an additional functional bitter taste receptor. METHODS AND RESULTS: To learn more about the function of the experimentally neglected TAS2R2, a functional screening with 122 bitter compounds is performed. The study observes responses with eight of the 122 bitter substances and identifies the substance phenylbutazone as a unique activator of TAS2R2 among the family of TAS2Rs, thus filling one more gap in the array of cognate bitter substances. CONCLUSIONS: The comprehensive characterization of the receptive range of TAS2R2 allows the classification into the group of TAS2Rs with a medium number of bitter agonists. The variability of bitter taste and its potential influences on food choice in some human populations may be even higher than assumed.


Assuntos
Receptores Acoplados a Proteínas G , Paladar , Humanos , Paladar/genética , Receptores Acoplados a Proteínas G/genética , Percepção Gustatória/genética
19.
Genes (Basel) ; 14(3)2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36980937

RESUMO

Harmful alcohol consumption has been considered a major public health issue globally, with the amounts of alcohol drunk being highest in the WHO European Region including Hungary. Alcohol consumption behaviors are complex human traits influenced by environmental factors and numerous genes. Beyond alcohol metabolization and neurotransmitter gene polymorphisms, taste preference-related genetic variants may also mediate alcohol consumption behaviors. Applying the Alcohol Use Disorders Identification Test (AUDIT) we aimed to elucidate the underlying genetic determinants of alcohol consumption patterns considering taste preference gene polymorphisms (TAS1R3 rs307355, TAS2R38 rs713598, TAS2R19 rs10772420 and CA6 rs2274333) in the Hungarian general (HG) and Roma (HR) populations. Alcohol consumption assessment was available for 410 HG and 387 HR individuals with 405 HG and 364 HR DNA samples being obtained for genotyping. No significant associations were found between TAS1R3 rs307355, TAS2R19 rs10772420, and CA6 rs2274333 polymorphisms and alcohol consumption phenotypes. Significant associations were identified between TAS2R38 rs713598 and the number of standard drinks consumed in the HG sample (genotype GG negatively correlated with the number of standard drinks; coef: -0.136, p = 0.028) and the prevalence of having six or more drinks among Roma (a negative correlation was identified in the recessive model; genotype GG, coef: -0.170, p = 0.049), although, none of these findings passed the Bonferroni-corrected probability criterion (p > 0.05). Nevertheless, our findings may suggest that alcohol consumption is partially driven by genetically determined taste preferences in our study populations. Further studies are required to strengthen the findings and to understand the drivers of alcohol consumption behavior in more depth.


Assuntos
Alcoolismo , Roma (Grupo Étnico) , Humanos , Roma (Grupo Étnico)/genética , Hungria/epidemiologia , Paladar/genética , Polimorfismo Genético , Consumo de Bebidas Alcoólicas/genética
20.
Curr Hypertens Rep ; 25(3): 25-33, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36800166

RESUMO

PURPOSE OF REVIEW: To provide a summary of current literature and propose potential mechanistic models to help us understand the role of HIV infection/antiretroviral therapy (ART), salt taste sensitivity (STS), and salt sensitivity of blood pressure (SSBP) in hypertension development. RECENT FINDINGS: The epithelial sodium channel (ENaC) is the main protein/sodium channel for recognizing Na + in the tongue and mediates preference to low-medium salt concentrations in animals and humans. Considering the pressor response to oral salt in individuals with SSBP, poor STS may worsen blood pressure. Specific genetic variants in ENaC are linked to salt taste perception and hypertension. HIV infection, some ART, and specific antihypertensive drugs are associated with reduced STS and an increased liking for salty foods. Persons with HIV (PWH) on ART may have a decreased STS and are at a higher risk of developing salt-sensitive hypertension. Inflammation mediated by dietary salt is one of the drivers of poor STS and salt-sensitive hypertension among PWH.


Assuntos
Infecções por HIV , Hipertensão , Animais , Humanos , Cloreto de Sódio na Dieta , Paladar/genética , Cloreto de Sódio , Pressão Sanguínea/genética , Canais Epiteliais de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...